
TTS NextGen Alerts
James Cameron, CS

Kate Hanson, CS
Muhammad Umair, CS

Andrew Wang, CS

Sponsor: Tufts Technology Services

Background
• Tufts Technology Services (TTS) handles technology
 solutions for the entirety of Tufts campus, including wifi
 networks and many on-campus devices.
• TTS has traditionally used enterprise services for alerts
 and monitoring in relation to their user logs.
 ∘ Premium Elasticsearch services, specifically Elastic
 Alerting.
• Within the past 2 years, TTS has changed to a free
 license and as a result has lost its previous alerting
 capability.
 ∘ Open source projects exist, but open source had
 supportability issues with Kibana and Elasticsearch.
• Effective and efficient alerting is a core part of how TTS
 successfully maintains a proper security posture.
 ∘ Without such alerting features, it is easy for potential
 issues to go unnoticed.

Goal
To design and develop an alert system that interfaces with
TTS’s ElasticSearch clusters; the alert system will have a
user-friendly frontend, a moddable backend, and will
incorporate standard enterprise security features.

Observations
• Implemented Features
 ∘ Input format by query type
 ∘ Single Sign-On (SSO) metadata hosting
 ∘ Internal alert manager
 ∘ HTTPS hosting
• Next Steps
 ∘ SSO integration
 ∘ Alert histories
 ∘ Flask server in production mode
 ∘ “Graceful” start, stop, and restart of backend server

Figure 1: Unique user heatmap for TTS network over the
course of a month, showing both the variety of user of the TTS
network and the scale of the information that TTS logs store.

Engineering Diagram

Industry Takeaways
• Security concerns are a lot more
 serious on the enterprise level.
 ∘ Previous projects, even within
 webdev, did not prepare us for real
 security requirements.
• Scalability is needed for data and usage
 of this magnitude.
 ∘ Many design decisions were made
 around supporting multiple users at
 once or speed optimizations.
• Work needs to be presented to
 non-technical people when working
 with an organization.
 ∘ Getting our descriptions high-level
 enough to be useful took time.

Project Takeaways
• The scale and scope of our project
 required professional enterprise-level
 knowledge and comprehensive
 understanding of non-technical
 specifications. We were unprepared for
 either and as a result did not meet our
 goals.
• Modular design allows for easier
 modification and extensibility for future
 development.
 ∘ The API of the flask server’s internal
 modules will remain relatively
 consistent.
• Knowing which features to prioritize
 was difficult and relied on multiple
 influences.
 ∘ We had to juggle immediate asks
 from our sponsors while considering
 what order of implementation made
 the most sense.

Reflection and Conclusion

Design
Initial Frontend: React
Hosted on Node server

Advantages
• Modular design allowed
 for code reuse.
• Lots of supporting
 documentation.
• Easy integration with
 Firebase.

Disadvantages
• Not easily SSO-compatible.

Figure 2: React
UI demo

Final Frontend: Express
Hosted on Node server

Advantages
• Easy SSO integration.
• Lightweight, uses base
 HTML.

Disadvantages
• Less modular in it’s design.

Figure 3: Express
UI demo

Backend: Flask
Server written in Python

Advantages
• Large collection of usable
 libraries.
 ∘ Elasticsearch included.
• Deep knowledge within
 group.

Disadvantages
• Difficult to convert to
 production.

Figure 4: Backend
demo

Technologies

