UNIVERSITY

Background

- Tufts Technology Services (TTS) handles technology
solutions for the entirety of Tufts campus, including wifi
networks and many on-campus devices.

- TTS has traditionally used enterprise services for alerts
and monitoring in relation to their user logs.

o Premium Elasticsearch services, specifically Elastic
Alerting.

- Within the past 2 years, TTS has changed to a free
license and as a result has lost its previous alerting
capability.

o Open source projects exist, but open source had
supportability issues with Kibana and Elasticsearch.

- Effective and efficient alerting is a core part of how TTS
successfully maintains a proper security posture.

o Without such alerting features, it is easy for potential
Issues to go unnoticed.

) l €
e &

s 0 O

= ,gf

SOUTH OCEANIA

B-RICA

2 0000CS
D =~ s R

OpenStreetMap contributors, Openiap

Figure 1: Unique user heatmap for TTS network over the
course of a month, showing both the variety of user of the TTS
network and the scale of the information that TTS logs store.

Goal

To design and develop an alert system that interfaces with
TTS'’s ElasticSearch clusters; the alert system will have a
user-friendly frontend, a moddable backend, and will
Incorporate standard enterprise security features.

Observations
- Implemented Features
o Input format by query type
o Single Sign-0n (SSO) metadata hosting
o Internal alert manager
o HTTPS hosting
- Next Steps
o SS0O integration
o Alert histories
o Flask server in production mode
o “Graceful” start, stop, and restart of backend server

Tufts 7178

- Security concerns are a lot more

- Work needs to be presented to

extGen Alerts

Engineering Diagram

Frontend Component Database component
: J [Dne of the accessable
Browser Machine 1 diatabates used)
Machine 0
gt forms :un:;t::ir:ti-m Alert metadata Machine 3
e - Client-side Server-side : Postgres
Weh Page e il | ’ o user-supplied guery tE
BE S treclels  (Express) (] .
2 Machine X
| Another database
AP request | Reipanie object
Machine 2
User Inputs Accessible Endpoints
(Crecentials + form inputs) (Al implemented endpoants are
Flask Server : BoceNadl
Machine 4
ElasticSearch
Reguest to endpaint
Endpaint response
Machine ¥
Backend Component Endpoint

Reflection and Conclusion

Project Takeaways
- The scale and scope of our project
required professional enterprise-level
knowledge and comprehensive
understanding of non-technical
specifications. We were unprepared for

Industry Takeaways

serious on the enterprise level.
o Previous projects, even within
webdey, did not prepare us for real
security requirements.

- Scalability is needed for data and usage either and as a result did not meet our

of this magnitude. goals.

o Many design decisions were made - Modular design allows for easier
around supporting multiple users at modification and extensibility for future
once or speed optimizations. development.

o The API of the flask server’s internal
non-technical people when working modules will remain relatively
with an organization. consistent.

o Getting our descriptions high-level - Knowing which features to prioritize

enough to be useful took time. was difficult and relied on multiple
Influences.

o We had to juggle immediate asks
from our sponsors while considering
what order of implementation made
the most sense.

Technologies
+ EXPress b
pYthon iIbana &
e’
n-de

PostgreSQL el aSt IC

- Modular design allowed

- Easy integration with

- Easy SSO integration.
- Lightweight, uses base

- Deep knowledge within

James Cameron, CS
Kate Hanson, CS
Muhammad Umair, CS
Andrew Wang, CS

Sponsor: Tufts Technology Services

Design

Initial Frontend: React

Hosted on Node server
Advantages Disadvantages
- Not easily SSO-compatible.
for code reuse.

- Lots of supporting : Home

documentation. « | signout|

. Tabs Demo
Firebase.

Multi-Bool Query  Filter Query  Aggregate Query  History

Start Time: Now v |

Figure 2: React

Threshold: (make float number input)|{1.0

Ul demo Functions{avg__v|
Interval: (make float number input)‘ 5.0 minutes v
Your Current Filters:
Fields: Values:
Field Dropdown: croc v |

Match to Value:|is v
|+
| Submit |

Final Frontend: Express
Hosted on Node server
Advantages Disadvantages
- Less modular in it's design.

HTML.
NextGen Alerts

Multiple Boolean H Filter \ Aggregate [ Raw ‘

Figure 3: Express Rav
Ul demo e

Subm?

Backend: Flask
Server written in Python

Advantages Disadvantages
- Large collection of usable - Difficult to convert to
libraries. production.

o Elasticsearch included.

o nextgenalerting_backend — mumair01@infosec-dev-03:~/n...

/opt/py_venv/test_env/1ib64/python3.6/site-packages/elasticsearch/connection/htt
p_urllib3.py:154: UserWarning: When using “ss1_context®, all other SSL related k
g re ignored
g rou p_ "When using “ssl_context®, all other SSL related kwargs are ignored"
* Serving Flask app "Development server" (lazy loading)
* Environment: production

Figure 4: BaCkend * Debug mode: on

* Running on https://10.246.104.129:5000/ (Press CTRL+C to quit)

(j 10.246.104.129 [08/Apr/2021 10:43:37]1 "POST // t HTTP/1.1" 200 -

e m 0 10.246.104.129 - - [@08/Apr/2021 10:43:37] "POST //operation HTTP/1.1" 200 -
10.246.104.129 - - [08/Apr/2021 10:43:37] "POST //operation HTTP/1.1" 200 -
10.246.104.129 - - [@08/Apr/2021 10:43:37] "POST //operation HTTP/1.1" 200 -
10.246.104.129 - - [@08/Apr/2021 10:43:37] "POST //operation HTTP/1.1" 200 -
10.246.104.129 - - [@8/Apr/2021 10:43:37] " t HTTP/1.1" 200 -
10.246.104.129 - - [@8/Apr/2021 10:44:02] "POST // t HTTP/1.1" 200 -
10.246.104.129 - - [08/Apr/2021 10:44:02] "POST //operation HTTP/1.1" 200 -
10.246.104.129 - - [08/Apr/2021 10:44:02] "POST //operation HTTP/1.1" 200 -
10.246.104.129 - - [08/Apr/2021 10:44:02] "POST //operation HTTP/1.1" 200 -
10.246.104.129 - - [@08/Apr/2021 10:44:02] " t HTTP/1.1" 200 -
Email sent




